Regression of experimental NIS-expressing breast cancer brain metastases in response to radioiodide/gemcitabine dual therapy

نویسندگان

  • Corinne Renier
  • John Do
  • Andrea Reyna-Neyra
  • Deshka Foster
  • Abhijit De
  • Hannes Vogel
  • Stefanie S. Jeffrey
  • Victor Tse
  • Nancy Carrasco
  • Irene Wapnir
چکیده

Treating breast cancer brain metastases (BCBMs) is challenging. Na+/I- symporter (NIS) expression in BCBMs would permit their selective targeting with radioiodide (131I-). We show impressive enhancement of tumor response by combining131I- with gemcitabine (GEM), a cytotoxic radiosensitizer. Nude mice mammary fat-pad (MFP) tumors and BCBMs were generated with braintropic MDA-MB-231Br cells transduced with bicistronically-linked NIS and firefly luciferase cDNAs. Response was monitored in vivo via bioluminescent imaging and NIS tumor expression.131I-/GEM therapy inhibited MFP tumor growth more effectively than either agent alone. BCBMs were treated with: high or low-dose GEM (58 or 14.5 mg/Kg×4); 131I- (1mCi or 2×0.5 mCi 7 days apart); and 131I-/GEM therapy. By post-injection day (PID) 25, 82-86% of controls and 78-83% of 131I--treated BCBM grew, whereas 17% low-dose and 36% high-dose GEM regressed. The latter tumors were smaller than the controls with comparable NIS expression (~20% of cells). High and low-dose 131I-/ GEM combinations caused 89% and 57% tumor regression, respectively. High-dose GEM/131I- delayed tumor growth: tumors increased 5-fold in size by PID45 (controls by PID18). Although fewer than 25% of cells expressed NIS, GEM/131I- caused dramatic tumor regression in NIS-transduced BCBMs. This effect was synergistic, and supports the hypothesis that GEM radiosensitizes cells to 131I-.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling through 3',5'-cyclic adenosine monophosphate and phosphoinositide-3 kinase induces sodium/iodide symporter expression in breast cancer.

The sodium/iodide symporter (NIS) is a membrane transport glycoprotein normally expressed in the thyroid gland and lactating mammary gland. NIS is a target for radioiodide imaging and therapeutic ablation of thyroid carcinomas and has the potential for similar use in breast cancer treatment. To facilitate NIS-mediated radionuclide therapy, it is necessary to identify signaling pathways that lea...

متن کامل

Evaluation of Strontium-89 in palliative treatment of widespread and painful bone metastases due to breast and prostate cancer [Persian]

Treatment of bone metastases comprises over 10% of the workload of a radiation-oncology center. Bone metastases produce severe pain and immobility, necessitate narcotic use, and reduce the quality of life. A good palliative treatment must be complete, free from side effects and fast; Thus we decided to evaluate Strontium-89 (89Sr) effectivity for palliation of breast and prostate cancer b...

متن کامل

Establishment and characterization of a breast cancer cell line expressing Na+/I- symporters for radioiodide concentrator gene therapy.

UNLABELLED 131I therapy is a widely accepted treatment for metastatic differentiated thyroid cancer. To investigate the feasibility of 131I therapy for breast cancer, we established breast cancer cells stably expressing Na-/I- symporter (NIS) gene that can be modulated and studied in vitro and in vivo. METHODS We transfected rat NIS genes into a human breast cancer cell line (MCF7) by electro...

متن کامل

Effect of sodium/iodide symporter (NIS)-mediated radioiodine therapy on estrogen receptor-negative breast cancer.

Since the sodium/iodide symporter (NIS) stimulates the iodine uptake in normal lactating breast, our study aimed to study the effect of NIS-mediated radioiodide therapy on ER-negative breast cancers. A recombinant lentivirus plasmid encoding the human NIS (hNIS) gene and firefly luciferase (Fluc) was constructed. MDA-MB-231 cells were transfected with the recombinant lentivirus, and the hNIS ge...

متن کامل

Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models.

Lactating breast tissue and some breast cancers express the sodium/iodide symporter (NIS) and concentrate iodide. We recently demonstrated that all-trans retinoic acid (tRA) induces both NIS gene expression and iodide accumulation in vitro in well-differentiated human breast cancer cells (MCF-7). In the present study, we investigated the in vivo efficacy and specificity of tRA-stimulated iodide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016